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Abstract

The measured spectral radiance signature for a material can vary significantly due to atmo-

spheric conditions and scene geometry. We show using a statistical analysis of a comprehensive

physical model that the variation in a material’s spectral signature lies in a low-dimensional
space. The spectral radiance model includes reflected solar and scattered radiation as well as

the effects of atmospheric gases and aerosols. The MODTRAN 3,5 code was employed for com-
puting radiative transfer aspects of the model, Using the new model, we develop a maximum
likelihood algorithm for material classification which is invariant to atmospheric conditions and

scene geometry. The algorithm is demonstrated for material classification in AVIRIS data,

1 Introduction

The development of airborne hyperspectral imaging spectrometers has provided an important

tool for studying the distribution of materials on the surface of the earth. Two such sensors,
the Hyperspectral Digital Imagery Collection Experiment (HYDICE) [1] and the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) [7], obtain over two hundred spectral mea-

surements per spatial location over the spectral range 0.4pm-2.5pm. One goal of these sensors

is to provide a spectrum at each spatial location which can be used to recognize the imaged

materials. Unfortunately, the sensor radiance measurements are affected by the atmospheric

and geometric conditions under which they were obtained, In order to extract intrinsic sur-

face properties, atmospheric and geometric effects must be accounted for, Some methods for
atmospheric correction are based on knowledge about the spectral reflectance of surfaces on
the ground [3] [6], Another approach [8] is to measure downwelling irradiance on the ground
to factor out atmospheric effects. Neither of these approaches is feasible for fully automated

material classification.

In this paper, we analyze the effects of atmospheric and geometric factors on the 0.4pm-
2..5pm radiance spectra measured by an airborne imaging spectrometer. l~e begin by presenting



a model for image spectral irradiance. Using this model and the MODTRAJ’ 3.5 atmospheric

modeling program [2] we generate a set of spectra which span the range of atmospheric and geo-

metric conditions. We show that these spectra are accurately represented by a low-dimensional

linear model, We use this model to derive a maximum Likelihood approach to material classifi-

cation which is invariant to atmospheric and geometric conditions,

2 Modeling Radiance Spectra

Consider a surface with normal~ on the ground at elevation z~ with an associated coordinate
system defined by polar angle 9 and azimuthal angle @. The surface is viewed by a sensor at

elevation z from direction (f?v,@v) and the solar direction is (O., @o)as shown in figure 1. The

spectral radiance incident upon sensor location (z, y) is given by

p(z, y, A) = Z-.(zg, z, 9“,d“, A)li(z, v, A)[md(z#,% AM~)w~)cdeo)
Zr

// ++ E,(O,f#,A)cos(0)sin(d)d6d4] + ~(z~, z, Oti,+V)~) (1)
$=0 e=o

where Z’U(Z9,z, Ov,&, A) is the upward atmospheric transmittance, R(z, y, A) is the spectral re-
flectance of the matte surface projecting to sensor location (z, y), K is a binary constant which
accounts for occluding bodies in the solar to surface path, Td(z~, O., @O,~) is the downward at-

mospheric transmittance, EO(A)is the extraterrestrial solar radiance, E, (8,@,J) is the scattered

sky radiance (i.e. excluding direct solar radiance) per unit solid angle incident on the surface

from direction (0, @), P(z~, z, 4,, &, A) is the path scattered radiance, and J denotes wave-
length. Thus, the three primary contributors to the observed spectral radiance p(z, y, A) for a

surface are due to reflected solar illumination, reflected sky illumination, and path radiance. To
illustrate the wide variability of radiance spectra, figure 2 is a plot of two calculated radiance
spectra for a white matte surface under two different atmospheric and geometric configurations.

.

3 Signature Dimensionality Analysis

3.1 Physical Background

The atmosphere is a heterogeneousmixtureof manygases and aerosols, several of whichinteract
with electromagnetic energy in the visible and near infrared through scattering and absorption

as modeled in equation (1) by Z’U(Z9,z,8V,4V, ~) and ~~(~g,~o,do, A). In order to interpret

accurately measured spectra, it is necessary to account for the effects of these attenuating

constituents, Moreover, spatial and temporal variation in the concentration of atmospheric
components makes it impossible to derive a single atmospheric correction function which will

work in all circumstances.

Scene geometry also plays an important role in the observed radiance spectrum. From ( 1),

path scattered radiance and atmospheric transmittance depend on sensor and surface altitude.
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Figure 1: Surface, sensor, solar geometry
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Figure 2: Radiance spectra of a uniform reflecting surface under two different



Solar zenith angle also has a strong influence on the downward atmospheric transmittance be-

cause atmospheric path length increases with increasing zenith angle, In addition, nonuniformly

distributed occluding bodies such as clouds can block direct solar radiation.

3.2 Linear Models for Li(.A)

In this section, we analyze the dimensionality of spectral signatures induced by atmospheric
and geometric effects, We rewrite equation (1) as

where the spatial coordinates have been dropped and the subscript i denotes a particular set of

atmospheric and geometric conditions. Note that Li(A) and Pi(J) depend on atmospheric and

geometric properties, but not on surface properties. In addition, for relatively clear conditions,
Pi(A) accounts for less than 10% of the total radiance measured by a sensor [3] motivating us ,
to focus on Li(A) in the following analysis.

Judd et al. [5] showed empirically that the spectral distribution of daytight over the visible
wavelengths can be well approximated by a linear combination of a small number of basis

functions. We apply a similar approach using the physical model in (1) to approximating Li(A)

over 0.4pm - 2.5pm using
N

where the functions lj (A) define a fixed basis and the constants aij are weighting coefficients.

For a discrete
approximation in

function Li(A) which is sampled at W wavelengths, define the quality of the

(3) by the squared error

(4)

For a set LI(A), LZ(A),..., L~(A) of discrete functions corresponding to different atmospheric
and geometric conditions, the total squared error associated with a set of basis functions is

ET=~Ei
i=l

(5)

. Consider a W x M matrix X with each column containing a discrete function Li(A). We
can compute an orthonormal basis for the column space of X using the singular value decom-
position [4]

X = UZVT (6)

For any A’, the first N columns of U provide an orthonormal basis set II(A), I?(A),..., IN(A)

which minimizes ET,



Scene Parameter
1

Values

HaO (cm) 0.39,0.88, 1.44,2.14, 3.11, 4.33

OS (atm cm) 0.07,0.11,0.12,0.14,0.15

Oa (atm m) 8407.9,8604.0,9179.4, 9453.2, 10536.8, 11713.4

CH, (atm cm) 0.83,0.84,0.85,0.86, 0.87
NO (atm cm) 0.0001,0.0002
NqO (atm cm) 0.189,0.199,0.202,0.209, 0.214,00221

CO (atm cm) 0.064,0.065,0.066,0.067, 0.070,0.072

COZ (atm m) 15.24, 16.61, 17.63,17.82, 18.92, 19.36

Solar-zenith angle 5°,15°,25”,35”,45”,55°, 65’,75°

Aerosol type rural, urban, maritime, desert

Visibility [km) 5,23,50, 70,85, 100

Sensor Altitude (km) 0, 1,2, 3,4,5,6

Table 1: Range of atmospheric and geometric parameters for linear model computation

An important question is how many /j(A) basis functions are required to approximate ac-
curately a large set of Li(~) functions corresponding to different atmospheric and geometric
conditions. The first step is to construct a representative set of Li (A) functions. We generated

such a set using (1) and MO DTRAN 3.5. The set consisted of 4032 functions spanning the

range of atmospheric and geometric parameters listed in Table 1. These functions were then
used to compute {j(A) using (6). Figure 3 is a plot of ~ as a function of N for the 4032 spectra

database. Note that ~ is small when N = 5.

4 Invariant Recognition

In this section, we describe an approach to recognizing materials having a known spectral
reflectance function
multispectral sensor

R(A) under unknown outdoor conditions. Using a discrete form of (2), a
obtains a vector of W measurements at each spatial location given by

where q(Ai) is zero mean gaussian noise for the ith band and we neglect path radiance, If the

elements L(Ai ) are represented by
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Figure 3: Error for linear model

as in (3), then (7) can be written

N
~(.Ai)= JJOjVj(.Ai) + ?)(A~) l~isw (9)

‘ j=l

where vj(~i) = ~(~i)~j(~i). IA p, Vj, R, and q be W-dimensional column vectors composed
of elements from ~(~i)$ vj(~i), R(A~), and ~(~i) for 1< i s W. The conditional probability of
measuring sensor vector p for a material with spectral reflectance vector R is

P(plR) = (27)0..s:1210.5exp (-0.5 ZlTZ-lD) (lo)

where Z is the covariance matrix of the noise vector q and

by

. N

D=P_~~jvj (11)
j=l

From (10), maximum likelihood estimates for the parameters 01, Oz,.. ., UN can be obtained
differentiating DTZ-l D with respect to trl, crz,..., ON and setting each of the IV equations

to 0. The estimated parameters can be substituted into (10) to obtain the likelihood of the

measurement vector p for a material with reflectance vector R. This likelihood can be com-

puted at each spatial location in the image and thresholded for illumination-invariant material
ckssification.

5 Experimental Verification

To verify the applicability of the linear model to real data, we examined several measured

spectra, The spectra were obtained under relatively clear conditions so that the path scattered



radiance pi(~) is small, Thus, we determine LI(A) by

Li(.A) . ~ (12)

using available spectral reflectance data R(A). We fit several of these measured Li(A) functions
using the linear model computed in section 3. Each side of figure 4 is a plot of Li(J) and
the corresponding fit using 5 basis functions. We see that although the spectra were obtained

under different conditions, the five dimensional model is quite accurate for each case. As an

additional test of the model, we classified surface materials in the Cuprite, Nevada AVIRIS [7]

images shown in figures 5(a) and 6(a) using the method in section 4 in conjunction with spectral
reflectance data obtained from the USGS Spectroscopy Laboratory. The complex three dimen-
sional geometry of the Cuprite scene requires an illumination-invariant classification approach

because ground orientation, as well as the presence of shadowing surfaces such as mountains,

affects the spectral dhtribution of illumination falling on surface materials, Both sides of Fig- ~
ure 4, in fact, are Li (A) functions incident on the same material at different locations in these

scenes. Figures 5(b) and 6(b) show the results of classification. The white areas in figures 5(b)
and 6(b) are Alunite, the light gray areas are Kaolinite, and the dark gray areas are a mixture
of Alunite and Silica, Figure 7(a) is a plot of a measured radiance spectrum of Alunite with

its corresponding fit, figure 7(b) is a plot of a measured radiance spectrum of an Alunite/Silica
mixture with its corresponding fit, and figure 8 is a plot of a measured radiance spectrum of

Kaolinite with its corresponding fit. The classification results are in strong agreement with the
mineral distribution in the region,

6 Summary

In this paper, we examined the effects of variations in the atmospheric conditions and scene

geometry on outdoor illumination functions. Using a physical model, we generated spectra
which- enumerate a large range of conditions. The calculated spectra were used to compute
a linear model for the space of atmospheric and geometric variation, We showed that a five
parameter linear model is adequate to represent the gamut of atmospheric and geometric effects.

This model can be used for automated material classification invariant to atmospheric conditions
and scene geometry, We verified the accuracy of the linear model using several measured spectra

corresponding to ground regions with known spectral reflectance.

References

[1] R. W. Basedow, D. C, Armer, and M. E. Anderson. HYDICE system: Implementation and
performance, In SPIE Proceedings, volume 2480, pages 2.58-267, 199.5.



-. ___.. .
Ore. ,

. . —

1

Wavelength (~m) Wavelength (pm)

Figure 4: Measured spectra and fits
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F’igure 6: (a) AVIRIS image 2 of Cuprite, Nevada. (b) Classification results for .\VIRIS image 2.
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Figure 8: Measured Kaolinite radiance and fit
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